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ABSTRACT

Let G = (V, E) be a simple and undirected graph. A proper colouring of the vertices of V (G) is an assignment of colours to

the vertices of G such that adjacent vertices receive different colours. A proper colouring of G induces a partition of V (G)

into independent sets. The minimum cardinality of a proper colour partition of G is called the chromatic number of G and

is denoted by (G). If in a proper colour partition of G, the union of any two-colour classes induces an acyclic subgraph,

then the colouring is called acyclic colouring of G. {[4], [5], [6]}. If instead, the union of any two colour classes in a

proper colour partition induces a disjoint collection of stars, the resulting proper colour partition is called a star partition.

{[6]}. A subset S of V(G) is called an equivalence set if the subgraph induced by S is component wise complete. In this

paper, a study of proper colour partition in which the union of any two colour classes induces an equivalence set is

initiated.
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INTRODUCTION

In what follows, a graph G means a finite, simple and undirected graph. The chromatic number of G is the minimum

cardinality of a partition of V (G) into independent sets. If the subgraph induced by a set of vertices of G is component wise

complete, then that set is called an equivalence set. In a proper colour partition, the subgraph induced by the union of any two-

colour classes is an equivalence set, then that colouring is called an equivalence colouring of the graph. In any graph, the

partition of V (G) into subsets each of which is a singleton is obviously an equivalence colouring. The minimum cardinality of

an equivalence colour partition of G is called the equivalence chromatic number of G and is denoted by (G).

A study of this colouring is made in this paper.

Definition 1.1. A proper colouring is an equivalence colouring if the union of any twocolour classes induce an

equivalence set. The minimum cardinality of such a colouring is called equivalence chromatic number of a graph and is

denoted by (G)

Example 1.1. Consider with vertices { , , , , , }. ( ) = 2 and the two colour classes are

{ , , } and { , , }. The union of these twocolourclasses induce which is not an equivalence set. But { , },

{ , }, { , } is a – partition of .
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Remark 1.2. χ(G) ≤ (G), When (G) = , χ(G) = (G).

Remark 1.3. This study is similar to acyclic and star colouring of graphs [8th Cologne-

Twente Workshop on Graphs and Combinatorial Optimization CTW09, Ecole Poly technique and CNAM,

Paris,

France, June 2 − 4, 2009, A. Lyons, Acyclic and star colouring of Joins of graphs and algorithm K for cographs,

199 − 204.]

In a minimum equivalence color partition, the sub graph induced by the union of any two colour classes is of form

t ∪s , t, s ≥ 0. In a minimum equivalence color partition, there may exist two independent colour classes without any

edges between them. In such a case, there will be an induced in the graph. For example, let G be the graph obtained

from by attaching paths of length 2 one each at the diametrically opposite vertices of .

Let V ( ) = { , , , }. Let { , , } and { , , } be the path of length of 2 attached at and

respectively. {{ , , }, { , }, { , }, { }};

{{ , }, { , }, { , }, { , }} are two minimum equivalence colour partition. In the first one, there

is no edge between { , , }, and{ }.In the second one, there is no edge between { , } and { , }. In this

graph, ≺ { , , , } ≻ is an induced . The join of { , , } and { } is independent but is adjacent with

both and of the join and hence the number of classes cannot be reduced. Similarly, in the join of { , } and

{ , } which is independent, but is adjacent with both and of the join and hence the number of classes

cannot be reduced.

Theorem 1.4. If a graph G is induced − free, then in a minimum equivalence colour partition, (i) There exists

an edge between any twocolour classes. (ii) Every colour class contains a colourful vertex, that is, a vertex which is

adjacent with every other colour class. (iii) After suitable modification of the minimum equivalence colour partition, there

exists a colour class which is an equivalence dominating set of the graph.

Proof

i. Suppose π = { , ,..., } be a minimum equivalence colour partition in an induced -free graph G. Suppose

there exists no edge between and , {1 ≤ i, j ≤ k, i≠ j}. Consider = ∪ ∪ − { − }. As G is induced

- free, there does not exist a vertex u in any {1 ≤ r ≤ k, r ≠ i, j} such that u is adjacent with some vertex of

and some vertex . Therefore, is an equivalence colour partition with cardinality less than that of the minimum

equivalence colour partition π, a contradiction.

ii. Arguing as in (i), we get that every colour class contains a colourful vertex (since as G is induced - free, any

vertex u in which is not adjacent to can be included in without aecting equivalence nature of π).

iii. Arguing as in (i), any vertex not in which is not adjacent with can be moved to resulting in , an

equivalence dominating set of the graph.

Remark 1.5. (i)leads to achromatic equivalence colour partition in an induced graph.

(ii)leads to b-equivalence colouring partition in an induced graph.
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Also, Greedy equivalence colouring partition in an induced graph can be defined.

(G) for some Well-known Graphs

Observation 1.6.

 ( )= n.

 ( , ) = n + 1.

 ( , ) = m + n.

 ( )= n for all n ≥ 4.

 ( ) =
2 = 23 ≥ 3

 (vi) ( ) =
3 if n ≡ 0 (mod3)4 if n ≡ 1 (mod3)5 ≡ 2 ( 3))

 ( ∘ ) = ( )+ 1. In particular, ( ∘ ) = m + 1.

Definition 1.7. An independent subset S of V (G) is an equivalence independent set of G if |N(v) ∩ S| ≤ 1 for

every (v) in (V − S). That is, any equivalence independent subset of V (G) is a nearly perfect set of (G). An equivalence

independent subset of G is an independent semi-strong subset of (G). The maximum cardinality of an equivalence

independent set is called the equivalence independence number of (G) and is denoted by (G) (or also by iss(G)). A

maximal equivalence independent set of G need not be a dominating set of G.

Example 1.2. In , any single vertex constitutes a maximum equivalence independent set of . It is obviously

not dominating and the diametrically opposite vertex is independent of the singleton equivalence independent set and its

inclusion will result in a vertex in the complement having two neighbours in the two-element independent set.

Remark 1.8. By recalling the definition of perfect dominating set : A dominating subset D of nearly perfect if for

any v in V − D, |N(v)∩D| ≤ 1, a subset D is strongly stable if for any v in V (G), |N(v) ∩ D| ≤ 1. [Page 115, 116 of Chapter

4.2 of Fundamentals of domination in graphs] The values of (G) are found for some known classes of graphs which are

similar to the values of iss(G) [7].

(G) For some Known Classes of Graphs

 (1) ( ) = 1.

 (2) ( , ) = 1.

 (3) ( , ) = 1.

 (4) ( ) =
− 1 ≡ 2( 4), ≠ 6ℎ

 (5) ( ) = 1 for all n ≥ 4.
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 (6) ( ) =

 (7) (P) = 1, where P is the Petersen Graph.

 (8) ( ( , , . . . . . . )) =
 (9) ( , ,...... )= 1, if n ≥ 3.

 (10) ( ∘ ) = n. In particular ( ∘ ) = m.

 (11) ( ) = n.

Main Results

Theorem 1.9: In any graph G, ( )⁄ ) ≤ (G) ≤ (n − (G) + 1 Proof. Let Π ={ , , , . . . . . }be a - partition of G where k = (G). Then | | ≤ (G) for every i, (1 ≤ i ≤ k). Therefore,= ∑ | | ≤ ( ).

Hence( ( )⁄ ) ≤ k = (G). Consider the partition ∏ = { , , , . . . . . } where is a - set of G

and the remaining are singletons from V − .∏ is an equivalence colouring and hence (G) ≤ r = (n − (G) +1).

Remark 1.10. (G)= n if and only if (G) = 1.

Theorem 1.11. (G) = 1 if and only if G = or for any independent set S of G with cardinality ≥ 2, there

exists a vertex in V − S which is adjacent with at least two vertices of S.

Proof. If G = or for any independent set S of G with cardinality ≥ 2, there exists a vertex in V −S which is

adjacent with at least two vertices of S, then (G) = 1. Conversely, suppose(G) = 1. If G ≠ then, G has an independent set say S of cardinality ≥ 2. If any vertex of V − S is adjacent

with at most one vertex of S, then S is equivalence independent set and hence (G) > | | ≥ 2, a contradiction. Hence

the theorem.

Remark 1.12. ( ) ≤ ( ). In , (G) ( ). In , ( ) = 1 ≤ ( ) = 2.
Theorem 1.13. ( ) = 2 if and only if there exist two independent vertices u and v such that any vertex w in

V − S is adjacent with at most one of (u, v) and for any two independent vertices of ≺V - S≻, either one of (x, y) is

adjacent with one of u, v say u and at least one vertex of (V − S) − (x, y) is adjacent with at least two of v, x and y (or )u, x

and y.

Proof. Let ( ) = 2. Then there exists an independent subset S = u, v such that any vertex w in V − S is

adjacent with at most one of (u, v).consider ≺V - S≻. If V −S is empty, then

G =( ). If | − | = 1, then G = or ( ∪ ).

Suppose | − | = 2. Let (V − S) = (x, y).

Case 1: x and y are adjacent.
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Subcase 1: u, v are independent of x, y. Then ( ) > 2, a contradiction.

In other cases, we get either with an isolated vertex or a with an isolated vertex or a .

In all these cases ( ) = 2
Case 2: x and y are independent.

In this case, either G is 2 or a with an isolated vertex. In this case, ( ) = 2.
Suppose |V − S| = 3.

Subcase 1: Suppose ≺V - S≻ is complete. Then ( ) = 2 except when u and v are isolates.

Subcase 2: Suppose ≺V - S≻ is not complete. The following 13 graphs satisfy ( ) = 2.

Figure 1

Let |V − S| = 4. Suppose ≺V - S≻ is complete. Then no vertex of (V − S) is adjacent with both u and v. Also, u

and v cannot be both independent of (V − S).

Suppose ≺V - S≻ is not complete. Then there exist x and y in (V − S) which are independent vertices in ≺V -

S≻.If u is adjacent with x then at least one vertex of (V − S) − (x, y) is adjacent with at least two of v, x and y. If both u

and v are not adjacent with any of x, y, then at least one vertex of (V − S) − (x, y) is adjacent with atleast two of v, x and y

or u, x and y.

Thus, for any two independent vertices of ≺V - S≻, either one of (x, y) is adjacent with one of u, v say u and at

least one vertex of (V − S) − (x, y) is adjacent with at least two of v, x and y or u, x and y. The converse is obvious.

Example 1.3. Let G be obtained from by adding two pendent vertices one each at two of the vertices of .

Then ( ) = 2.
Example 1.4. Let , = ( , , , ). Let G be obtained from , by adding two pendent vertices x, y one each

at and . Then ( ) = 2.
Theorem 1.14. ( ) = if and only if G = ( ).

Proof. Suppose, ( ) = . As ( ) ≤ ( ), we get that ( ) = n.Therefore, G = ( ) The converse is

obvious.

Theorem 1.15. ( ) = n − 1 if and only if G has exactly one edge.
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Proof. Suppose ( ) = n − 1. Then, as ( ) ≤ ( ), we get that ( ) = n−1or n.

If ( ) = , then G = ( ) and hence ( ) = , a contradiction. Therefore,( ) = n−1. That is, G has exactly one edge. The converse is obvious.

The following two theorems are easy to prove.

Theorem 1.16. Let amd be two vertex disjoint graphs. Then( ∪ ) = ( ( ), ( )).
Theorem 1.17. Let amd be two vertex disjoint graphs. Then( + ) = | ( )| + | ( )|
Topic for further study

 Maximum cardinality of equivalence colour partition in which there exists an edge between any two colour

classes in −free graph.

 Grundy equivalence colour partition.
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