EQUIVALENCE COLOURING OF GRAPHS

V. Praba 1 \& V. Swaminathan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli, Tamil Nadu, India
${ }^{2}$ Ramanujan Research Center, Department of Mathematics, Saraswathi Narayanan College, Madurai, Tamil Nadu, India

Abstract

Let $G=(V, E)$ be a simple and undirected graph. A proper colouring of the vertices of $V(G)$ is an assignment of colours to the vertices of G such that adjacent vertices receive different colours. A proper colouring of G induces a partition of $V(G)$ into independent sets. The minimum cardinality of a proper colour partition of G is called the chromatic number of G and is denoted by $\chi(G)$. If in a proper colour partition of G, the union of any two-colour classes induces an acyclic subgraph, then the colouring is called acyclic colouring of G. \{[4], [5], [6]\}. If instead, the union of any two colour classes in a proper colour partition induces a disjoint collection of stars, the resulting proper colour partition is called a star partition. $\{[6]\}$. A subset S of $V(G)$ is called an equivalence set if the subgraph induced by S is component wise complete. In this paper, a study of proper colour partition in which the union of any two colour classes induces an equivalence set is initiated.

KEYWORDS: Equivalence Coloring
AMS Subject Classification: 05C69, 05C15

Article History

Received: 29 Oct 2021 | Revised: 04 Oct 2021 |Accepted: 07 Oct 2021

INTRODUCTION

In what follows, a graph G means a finite, simple and undirected graph. The chromatic number of G is the minimum cardinality of a partition of $V(\mathrm{G})$ into independent sets. If the subgraph induced by a set of vertices of G is component wise complete, then that set is called an equivalence set. In a proper colour partition, the subgraph induced by the union of any twocolour classes is an equivalence set, then that colouring is called an equivalence colouring of the graph. In any graph, the partition of $\mathrm{V}(\mathrm{G})$ into subsets each of which is a singleton is obviously an equivalence colouring. The minimum cardinality of an equivalence colour partition of G is called the equivalence chromatic number of G and is denoted by $\chi_{e q}(G)$.

A study of this colouring is made in this paper.
Definition 1.1. A proper colouring is an equivalence colouring if the union of any twocolour classes induce an equivalence set. The minimum cardinality of such a colouring is called equivalence chromatic number of a graph and is denoted by $\chi_{\text {eq }}(\mathrm{G})$

Example 1.1. Consider P_{6} with vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\} . \chi\left(P_{6}\right)=2$ and the two colour classes are $\left\{v_{1}, v_{3}, v_{5}\right\}$ and $\left\{v_{2}, v_{4}, v_{6}\right\}$. The union of these twocolourclasses induce P_{6} which is not an equivalence set. But $\left\{v_{1}, v_{4}\right\}$, $\left\{v_{2}, v_{5}\right\},\left\{v_{3}, v_{6}\right\}$ is a $\chi_{e q}-$ partition of P_{6}.

Remark 1.2. $\chi(\mathrm{G}) \leq \chi_{e q}(\mathrm{G})$, When $(\mathrm{G})=K_{n}, \chi(\mathrm{G})=\chi_{e q}(\mathrm{G})$.
Remark 1.3. This study is similar to acyclic and star colouring of graphs [8th Cologne-
Twente Workshop on Graphs and Combinatorial Optimization CTW09, Ecole Poly technique and CNAM, Paris,

France, June 2 - 4, 2009, A. Lyons, Acyclic and star colouring of Joins of graphs and algorithm K for cographs, 199 204.]

In a minimum equivalence color partition, the sub graph induced by the union of any two colour classes is of form $\mathrm{t} K_{2}$ Us $K_{1}, \mathrm{t}, \mathrm{s} \geq 0$. In a minimum equivalence color partition, there may exist two independent colour classes without any edges between them. In such a case, there will be an induced P_{3} in the graph. For example, let G be the graph obtained from C_{4} by attaching paths of length 2 one each at the diametrically opposite vertices of C_{4}.

Let $\mathrm{V}\left(C_{4}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Let $\left\{u_{2}, u_{5}, u_{6}\right\}$ and $\left\{u_{4}, u_{7}, u_{8}\right\}$ be the path of length of 2 attached at u_{2} and u_{4} respectively. $\left\{\left\{u_{1}, u_{6}, u_{8}\right\},\left\{u_{2}, u_{7}\right\},\left\{u_{4}, u_{5}\right\},\left\{u_{3}\right\}\right\} ;$
$\left\{\left\{u_{1}, u_{6}\right\},\left\{u_{2}, u_{7}\right\},\left\{u_{3}, u_{8}\right\},\left\{u_{4}, u_{5}\right\}\right\}$ are two minimum equivalence colour partition. In the first one, there is no edge between $\left\{u_{1}, u_{6}, u_{8}\right\}$, and $\left\{u_{3}\right\}$. In the second one, there is no edge between $\left\{u_{1}, u_{6}\right\}$ and $\left\{u_{3}, u_{8}\right\}$. In this graph, $\prec\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}>$ is an induced P_{3}. The join of $\left\{u_{1}, u_{6}, u_{8}\right\}$ and $\left\{u_{3}\right\}$ is independent but u_{2} is adjacent with both u_{1} and u_{3} of the join and hence the number of classes cannot be reduced. Similarly, in the join of $\left\{u_{1}, u_{6}\right\}$ and $\left\{u_{3}, u_{8}\right\}$ which is independent, but u_{2} is adjacent with both u_{1} and u_{3} of the join and hence the number of classes cannot be reduced.

Theorem 1.4. If a graph G is induced P_{3} - free, then in a minimum equivalence colour partition, (i) There exists an edge between any twocolour classes. (ii) Every colour class contains a colourful vertex, that is, a vertex which is adjacent with every other colour class. (iii) After suitable modification of the minimum equivalence colour partition, there exists a colour class which is an equivalence dominating set of the graph.

Proof

i. Suppose $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a minimum equivalence colour partition in an induced P_{3}-free graph G. Suppose there exists no edge between V_{i} and $V_{j},\{1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{k}, \mathrm{i} \neq \mathrm{j}\}$. Consider $\pi_{1}=\pi \cup V_{i} \cup V_{j}-\left\{V_{i}-V_{j}\right\}$. As G is induced P_{3} - free, there does not exist a vertex u in any $V_{r}\{1 \leq \mathrm{r} \leq \mathrm{k}, \mathrm{r} \neq \mathrm{i}, \mathrm{j}\}$ such that u is adjacent with some vertex of V_{i} and some vertex V_{j}. Therefore, π_{1} is an equivalence colour partition with cardinality less than that of the minimum equivalence colour partition π, a contradiction.
ii. Arguing as in (i), we get that every colour class contains a colourful vertex (since as G is induced P_{3} - free, any vertex u in V_{i} which is not adjacent to V_{j} can be included in V_{j} without aecting equivalence nature of π).
iii. Arguing as in (i), any vertex not in V_{1} which is not adjacent with V_{1} can be moved to V_{1} resulting in V_{1}, an equivalence dominating set of the graph.

Remark 1.5. (i)leads to achromatic equivalence colour partition in an induced P_{3} graph.
(ii)leads to b-equivalence colouring partition in an induced P_{3} graph.

Also, Greedy equivalence colouring partition in an induced P_{3} graph can be defined.

$\chi_{e q}(\mathbf{G})$ for some Well-known Graphs

Observation 1.6.

- $\quad \chi_{e q}\left(K_{n}\right)=\mathrm{n}$.
- $\quad \chi_{e q}\left(K_{1, n}\right)=\mathrm{n}+1$.
- $\quad \chi_{e q}\left(K_{m, n}\right)=\mathrm{m}+\mathrm{n}$.
- $\quad \chi_{e q}\left(W_{n}\right)=\mathrm{n}$ for all $\mathrm{n} \geq 4$.
- $\quad \chi_{e q}\left(P_{n}\right)=\left\{\begin{array}{l}2 \text { if } n=2 \\ 3 \text { ifn } \geq 3\end{array}\right.$
- (vi) $\chi_{e q}\left(C_{n}\right)=\left\{\begin{array}{l}3 \text { if } n \equiv 0(\bmod 3) \\ 4 \text { if } n \equiv 1(\bmod 3)) \\ 5 \text { if } n \equiv 2(\bmod 3)\end{array}\right.$
- $\quad \chi_{e q}\left(G \circ K_{1}\right)=\chi_{e q}(G)+1$. In particular, $\chi_{e q}\left(G \circ K_{1}\right)=\mathrm{m}+1$.

Definition 1.7. An independent subset S of $V(G)$ is an equivalence independent set of G if $|N(v) \cap S| \leq 1$ for every (v) in $(\mathrm{V}-\mathrm{S})$. That is, any equivalence independent subset of $\mathrm{V}(\mathrm{G})$ is a nearly perfect set of (G). An equivalence independent subset of G is an independent semi-strong subset of (G). The maximum cardinality of an equivalence independent set is called the equivalence independence number of (G) and is denoted by $\beta_{e q}(\mathrm{G})$ (or also by iss(G)). A maximal equivalence independent set of G need not be a dominating set of G.

Example 1.2. In C_{4}, any single vertex constitutes a maximum equivalence independent set of C_{4}. It is obviously not dominating and the diametrically opposite vertex is independent of the singleton equivalence independent set and its inclusion will result in a vertex in the complement having two neighbours in the two-element independent set.

Remark 1.8. By recalling the definition of perfect dominating set : A dominating subset D of nearly perfect if for any v in $V-D,|N(v) \cap D| \leq 1$, a subset D is strongly stable if for any v in $V(G),|N(v) \cap D| \leq 1$. [Page 115, 116 of Chapter 4.2 of Fundamentals of domination in graphs] The values of $\beta_{e q}(\mathrm{G})$ are found for some known classes of graphs which are similar to the values of iss(G) [7].

$\beta_{e q}(\mathbf{G})$ For some Known Classes of Graphs

- (1) $\beta_{e q}\left(K_{n}\right)=1$.
- (2) $\beta_{e q}\left(K_{m, n}\right)=1$.
- $\quad(3) \beta_{e q}\left(K_{1, n}\right)=1$.
- (4) $\beta_{e q}\left(P_{n}\right)=\left\{\begin{array}{c}\frac{n}{2}-1 \text { if } n \equiv 2(\bmod 4), n \neq 6 \\ {\left[\frac{n}{2}\right] \text { otherwise }}\end{array}\right.$
- (5) $\beta_{e q}\left(W_{n}\right)=1$ for all $n \geq 4$.
- (6) $\beta_{e q}\left(C_{n}\right)=\left\lfloor\frac{n}{3}\right\rfloor$
- (7) $\beta_{e q}(\mathrm{P})=1$, where P is the Petersen Graph.
- (8) $\beta_{e q}\left(K_{m}\left(a_{1}, a_{2}, \ldots \ldots a_{m}\right)\right)=m$
- (9) $\beta_{e q}\left(K_{a_{1}, a_{2}, \ldots \ldots . a_{m}}\right)=1$, if $\mathrm{n} \geq 3$.
- (10) $\beta_{e q}\left(\right.$ (䋆 $\left.\circ K_{1}\right)=\mathrm{n}$. In particular $\beta_{e q}\left(K_{m} \circ K_{1}\right)=\mathrm{m}$.
- (11) $\beta_{e q}(\bar{W} \bar{n})=n$.

Main Results

Theorem 1.9: In any graph $G,\left(n / \beta_{e q}(G)\right) \leq \chi_{e q}(G) \leq\left(n-\chi_{e q}(G)+1\right)$ Proof. Let $\Pi=$ $\left\{V_{1}, V_{2}, V_{3}, \ldots . . V_{k}\right\}$ be a $\chi_{e q}$ - partition of G where $\mathrm{k}=\chi_{e q}(\mathrm{G})$. Then $\left|V_{i}\right| \leq \beta_{e q}(\mathrm{G})$ for every $\mathrm{i},(1 \leq \mathrm{i} \leq \mathrm{k})$. Therefore, $n=\sum_{i=1}^{k}\left|V_{i}\right| \leq k \beta_{e q}(G)$.
$\operatorname{Hence}\left(n / \beta_{e q}(G)\right) \leq \mathrm{k}=\chi_{e q}(\mathrm{G})$. Consider the partition $\Pi_{1}=\left\{V_{1}, V_{2}, V_{3}, \ldots . . V_{r}\right\}$ where V_{1} is a $\beta_{e q^{-}}$set of G and the remaining are singletons from $\mathrm{V}-V_{1} \cdot \prod_{1}$ is an equivalence colouring and hence $\chi_{e q}(\mathrm{G}) \leq \mathrm{r}=\left(\mathrm{n}-\chi_{e q}(\mathrm{G})+\right.$ $1)$.

Remark 1.10. $\chi_{e q}(\mathrm{G})=\mathrm{n}$ if and only if $\beta_{e q}(\mathrm{G})=1$.
Theorem 1.11. $\beta_{e q}(\mathrm{G})=1$ if and only if $\mathrm{G}=K_{n}$ or for any independent set S of G with cardinality ≥ 2, there exists a vertex in $V-S$ which is adjacent with at least two vertices of S.

Proof. If $\mathrm{G}=K_{n}$ or for any independent set S of G with cardinality ≥ 2, there exists a vertex in $\mathrm{V}-\mathrm{S}$ which is adjacent with at least two vertices of S , then $\beta_{e q}(G)=1$. Conversely, suppose
$\beta_{e q}(\mathrm{G})=1$. If $\mathrm{G} \neq K_{n}$ then, G has an independent set say S of cardinality ≥ 2. If any vertex of $\mathrm{V}-\mathrm{S}$ is adjacent with at most one vertex of S, then S is equivalence independent set and hence $\beta_{e q}(G)>|S| \geq 2$, a contradiction. Hence the theorem.

Remark 1.12. $\beta_{e q}(G) \leq \beta_{0}(G) . \operatorname{In} K_{n}, \beta_{e q}(G) \beta_{0}(G) . \operatorname{In} C_{4}, \beta_{e q}(G)=1 \leq \beta_{0}(G)=2$.
Theorem 1.13. $\beta_{\text {eq }}(G)=2$ if and only if there exist two independent vertices u and v such that any vertex w in $\mathrm{V}-\mathrm{S}$ is adjacent with at most one of (u, v) and for any two independent vertices of $\langle\mathrm{V}-\mathrm{S}\rangle$, either one of (x, y) is adjacent with one of u, v say u and at least one vertex of $(V-S)-(x, y)$ is adjacent with at least two of v, x and y (or) u, x and y.

Proof. Let $\beta_{e q}(G)=2$. Then there exists an independent subset $S=u$, v such that any vertex w in $V-S$ is adjacent with at most one of (u, v).consider $\langle V-S\rangle$. If $V-S$ is empty, then

$$
\begin{aligned}
& \mathrm{G}=\left(\overline{K_{2}}\right) . \text { If }|V-S|=1 \text {, then } \mathrm{G}=\left(\overline{K_{3}}\right) \text { or }\left(K_{2} \cup K_{1}\right) . \\
& \text { Suppose } i V-S \mid=2 . \text { Let }(\mathrm{V}-\mathrm{S})=(\mathrm{x}, \mathrm{y}) .
\end{aligned}
$$

Case 1: x and y are adjacent.

Subcase 1: u, v are independent of x, y. Then $\beta_{e q}(G)>2$, a contradiction.
In other cases, we get either P_{3} with an isolated vertex or a C_{3} with an isolated vertex or a P_{4}.
In all these cases $\beta_{e q}(G)=2$
Case 2: x and y are independent.
In this case, either G is $2 K_{2}$ or a P_{3} with an isolated vertex. In this case, $\beta_{e q}(G)=2$.
Suppose $|\mathrm{V}-\mathrm{S}|=3$.
Subcase 1: Suppose $\langle\mathrm{V}-\mathrm{S}\rangle$ is complete. Then $\beta_{e q}(G)=2$ except when u and v are isolates.
Subcase 2: Suppose $\langle\mathrm{V}-\mathrm{S}\rangle$ is not complete. The following 13 graphs satisfy $\beta_{e q}(G)=2$.

Figure 1
Let $|\mathrm{V}-\mathrm{S}|=4$. Suppose $<\mathrm{V}-\mathrm{S}\rangle$ is complete. Then no vertex of $(\mathrm{V}-\mathrm{S})$ is adjacent with both u and v . Also, u and v cannot be both independent of $(\mathrm{V}-\mathrm{S})$.

Suppose $\langle\mathrm{V}-\mathrm{S}\rangle$ is not complete. Then there exist x and y in $(\mathrm{V}-\mathrm{S})$ which are independent vertices in $<\mathrm{V}-$ $S>$.If u is adjacent with x then at least one vertex of $(V-S)-(x, y)$ is adjacent with at least two of v, x and y. If both u and v are not adjacent with any of x, y, then at least one vertex of $(V-S)-(x, y)$ is adjacent with atleast two of v, x and y or u, x and y .

Thus, for any two independent vertices of $\langle V-S\rangle$, either one of (x, y) is adjacent with one of u, v say u and at least one vertex of $(V-S)-(x, y)$ is adjacent with at least two of v, x and y or u, x and y. The converse is obvious.

Example 1.3. Let G be obtained from K_{4} by adding two pendent vertices one each at two of the vertices of K_{4}. Then $\beta_{\text {eq }}(G)=2$.

Example 1.4. Let $V_{K_{1,3}}=\left(u, v_{1}, v_{2}, v_{3}\right)$. Let G be nhtained from $K_{1,3}$ by adding two pendent vertices x, y one each at v_{1} and v_{2}. Then $\beta_{e q}(G)=2$.

Theorem 1.14. $\beta_{e q}(G)=n$ if and only if $\mathrm{G}=\left(\overline{K_{n}}\right)$.
Proof. Suppose, $\beta_{e q}(G)=n$. As $\beta_{e q}(G) \leq \beta_{0}(G)$, we get that $\beta_{0}(G)=\mathrm{n}$. Therefore, $G=(i, \eta \eta=n)$ The converse is obvious.

Theorem 1.15. $\beta_{\text {eq }}(G)=\mathrm{n}-1$ if and only if G has exactly one edge.

Proof. Suppose $\beta_{e q}(G)=$ rHi-1. Then, as $\beta_{e q}(G) \leq \beta_{0}(G)$, we get that $\beta_{0}(G)=\mathrm{n}-1$ or n .
If $\beta_{0}(G)=n$, then $G=(i, \bar{n})$ and hence $\beta_{e q}(G)=n$, a contradiction. Therefore,
$\beta_{0}(G)=\mathrm{n}-1$. That is, G has exactly one edge. The converse is obvious.
The following two theorems are easy to prove.

Theorem 1.16. Let G_{1} amd G_{2} be two vertex disjoint graphs. Then
$\chi_{e q}\left(G_{1} \cup G_{2}\right)=\max \left(\chi_{e q}\left(G_{1}\right), \chi_{e q}\left(G_{2}\right)\right)$.
Theorem 1.17. Let G_{1} amd G_{2} be two vertex disjoint graphs. Then
$\chi_{e q}\left(G_{1}+G_{2}\right)=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|$
Topic for further study

- Maximum cardinality of equivalence colour partition in which there exists an edge between any two colour classes in P_{3}-free graph.
- Grundy equivalence colour partition.

REFERENCES

1. F. Harary, Graph Theory, Addison-Wesley Reading, MA (1969).
2. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel DekkerInc., 1998.
3. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced topics, Marcel DekkerInc., 1998.
4. Noge Alon, Colin McDiarmid, Bruce Reed Acyclic colouring of graph, Random Structures and Algorithms,Vol.2, issue 3,1991, 277 - 288.
5. Bharat Joshi, Acyclic Coloring of Graphs, Thesis submitted in Theory and Algorithmic Research International Institute of Information Technology Hyderabad, INDIA February, 2010
6. A.Lyons, Acyclic and Star Colorings of Joins of Graphs and an Algorithm for Cographs, 8th CologneTwenteWorkshop on Graphs and Combinatorial Optimizaion, CTW 09, 2009, 199-204.
7. V.Praba, A study of different types of vertex partition in a graph, Ph.D. Thesis, Sri ChandrasekarendraSaraswathi Viswa Mahavidhyalaya, 2018
